Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Debugging a failure usually requires reproducing it first. This can be hard for failures in production distributed systems, where bugs are exposed only by some unusual faulty events. While fault injection testing becomes popular, existing solutions are designed for bug finding. They are ineffective and inefficient to reproduce a specific failure during debugging. We explore a new type of fault injection technique for quickly reproducing a given fault-induced production failure in distributed systems. We present a tool, Anduril, that uses static causal analysis and a novel feedback-driven algorithm to quickly search the enormous fault space for the root-cause fault and timing. We evaluate Anduril on 22 real-world complex fault-induced failures from five large-scale distributed systems. Anduril reproduced all failures by identifying and injecting the root-cause faults at the right time, in a median of 8 minutes.more » « lessFree, publicly-accessible full text available November 4, 2025
- 
            Many distributed system failures, especially the notorious partial service failures, are caused by bugs that are only triggered by subtle faults at rare timing. Existing testing is inefficient in exposing such bugs. This paper presents Legolas, a fault injection testing framework designed to address this gap. To precisely simulate subtle faults, Legolas statically analyzes the system code and instruments hooks within a system. To efficiently explore numerous faults, Legolas introduces a novel notion of abstract states and automatically infers abstract states from code. During testing, Legolas designs an algorithm that leverages the inferred abstract states to make careful fault injection decisions. We applied Legolas on the latest releases of six popular, extensively tested distributed systems. Legolas found 20 new bugs that result in partial service failures.more » « less
- 
            Narodytska, Nina; Ruemmer, Philipp (Ed.)Deep reinforcement learning (DRL) is a powerful machine learning paradigm for generating agents that control autonomous systems. However, the “black box” nature of DRL agents limits their deployment in real-world safety-critical applications. A promising approach for providing strong guarantees on an agent's behavior is to use Neural Lyapunov Barrier (NLB) certifcates, which are learned functions over the system whose properties indirectly imply that an agent behaves as desired. However, NLB-based certifcates are typically diffcult to learn and even more diffcult to verify, especially for complex systems. In this work, we present a novel method for training and verifying NLB-based certifcates for discrete-time systems. Specifcally, we introduce a technique for certifcate composition, which simplifes the verifcation of highly-complex systems by strategically designing a sequence of certifcates. When jointly verifed with neural network verifcation engines, these certifcates provide a formal guarantee that a DRL agent both achieves its goals and avoids unsafe behavior. Furthermore, we introduce a technique for certifcate fltering, which signifcantly simplifes the process of producing formally verifed certifcates. We demonstrate the merits of our approach with a case study on providing safety and liveness guarantees for a DRL-controlled spacecraft.more » « less
- 
            In recent years, deep reinforcement learning (DRL) approaches have generated highly successful controllers for a myriad of complex domains. However, the opaque nature of these models limits their applicability in aerospace systems and sasfety-critical domains, in which a single mistake can have dire consequences. In this paper, we present novel advancements in both the training and verification of DRL controllers, which can help ensure their safe behavior. We showcase a design-for-verification approach utilizing k-induction and demonstrate its use in verifying liveness properties. In addition, we also give a brief overview of neural Lyapunov Barrier certificates and summarize their capabilities on a case study. Finally, we describe several other novel reachability-based approaches which, despite failing to provide guarantees of interest, could be effective for verification of other DRL systems, and could be of further interest to the community.more » « less
- 
            Avni, Guy; Giacobbe, Mirco; Johnson, Taylor T; Katz, Guy; Lukina, Anna; Narodytska, Nina; Schilling, Christian (Ed.)Quantization replaces floating point arithmetic with integer arithmetic in deep neural networks, enabling more efficient on-device inference with less power and memory. However, it also brings in loss of generalization and even potential errors to the models. In this work, we propose a parallelization technique for formally verifying the equivalence between quantized models and their original real-valued counterparts. In order to guarantee both soundness and completeness, mixed integer linear programming (MILP) is deployed as the baseline technique. Nevertheless, the incorporation of two networks as well as the mixture of integer and real number arithmetic make the problem much more challenging than verifying a single network, and thus using MILP alone is inadequate for the non-trivial cases. To tackle this, we design a distributed verification technique that can leverage hundreds of CPUs on high-performance computing clusters. We develop a two-tier parallel framework and propose property- and output-based partition strategies. Evaluated on perception networks quantized with PyTorch, our approach outperforms existing methods in successfully verifying many cases that are otherwise considered infeasible.more » « less
- 
            Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)The softmax function is a ubiquitous component at the output of neural networks and increasingly in intermediate layers as well. This paper provides convex lower bounds and concave upper bounds on the softmax function, which are compatible with convex optimization formulations for characterizing neural networks and other ML models. We derive bounds using both a natural exponential-reciprocal decomposition of the softmax as well as an alternative decomposition in terms of the log-sum-exp function. The new bounds are provably and/or numerically tighter than linear bounds obtained in previous work on robustness verification of transformers. As illustrations of the utility of the bounds, we apply them to verification of transformers as well as of the robustness of predictive uncertainty estimates of deep ensembles.more » « less
- 
            Gurfinkel, Arie; Ganesh, Vijay (Ed.)Abstract This paper serves as a comprehensive system description of version 2.0 of the Marabou framework for formal analysis of neural networks. We discuss the tool’s architectural design and highlight the major features and components introduced since its initial release.more » « less
- 
            Fisman, Dana; Rosu, Grigore (Ed.)Inspired by sum-of-infeasibilities methods in convex optimization, we propose a novel procedure for analyzing verification queries on neural networks with piecewise-linear activation functions. Given a convex relaxation which over-approximates the non-convex activation functions, we encode the violations of activation functions as a cost function and optimize it with respect to the convex relaxation. The cost function, referred to as the Sum-of-Infeasibilities (SoI), is designed so that its minimum is zero and achieved only if all the activation functions are satisfied. We propose a stochastic procedure, DeepSoI, to efficiently minimize the SoI. An extension to a canonical case-analysis-based complete search procedure can be achieved by replacing the convex procedure executed at each search state with DeepSoI. Extending the complete search with DeepSoI achieves multiple simultaneous goals: 1) it guides the search towards a counter-example; 2) it enables more informed branching decisions; and 3) it creates additional opportunities for bound derivation. An extensive evaluation across different benchmarks and solvers demonstrates the benefit of the proposed techniques. In particular, we demonstrate that SoI significantly improves the performance of an existing complete search procedure. Moreover, the SoI-based implementation outperforms other state-of-the-art complete verifiers. We also show that our technique can efficiently improve upon the perturbation bound derived by a recent adversarial attack algorithm.more » « less
- 
            Piskac, Ruzica; Whalen, Michael W. (Ed.)In recent years, cloud service providers have sold computation in increasingly granular units. Most recently, "serverless" executors run a single executable with restricted network access and for a limited time. The beneft of these restrictions is scale: thousand-way parallelism can be allocated in seconds, and CPU time is billed with sub-second granularity. To exploit these executors, we introduce gg-SAT: an implementation of divide-and-conquer SAT solving. Infrastructurally, gg-SAT departs substantially from previous implementations: rather than handling process or server management itself, gg-SAT builds on the gg framework, allowing computations to be executed on a confgurable backend, including serverless offerings such as AWS Lambda. Our experiments suggest that when run on the same hardware, gg-SAT performs competitively with other D&C solvers, and that the 1000-way parallelism it offers (through AWS Lambda) is useful for some challenging SAT instances.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available